Practice Quiz 6

1) Gas in a constant-volume gas thermometer registers a pressure of 75.0 kPa at $0^{\circ} \mathrm{C}$. Assuming ideal behavior, what is the pressure of this gas at $200^{\circ} \mathrm{C}$?
A) 120 kPa
B) 130 kPa
C) 140 kPa
D) 150 kPa

Answer: B
2) The coefficient of linear expansion of lead is $29 \times 10^{-6} \mathrm{~K}^{-1}$. What change in temperature will cause a $10-\mathrm{m}$ long lead bar to change in length by 3.0 mm ?
A) 5.0 K
B) 10 K
C) 15 K
D) 20 K

Answer: B
3) An aluminum electric tea kettle has a mass of 500 g . It has a $500-\mathrm{W}$ heating coil. How long will it take to heat up 1.0 kg of water from $18^{\circ} \mathrm{C}$ to $98^{\circ} \mathrm{C}$ in the tea kettle? The specific heat of aluminum is $900 \mathrm{~J} /(\mathrm{kgXK})$.
A) 5 minutes
B) 7 minutes
C) 12 minutes
D) 15 minutes

Answer: C
4) A 350 g piece of metal at $100^{\circ} \mathrm{C}$ is dropped into a $100-\mathrm{g}$ aluminum cup containing 500 g of water at $15^{\circ} \mathrm{C}$. The final temperature of the system is $40^{\circ} \mathrm{C}$. What is the specific heat of the metal, assuming no heat is exchanged with the surroundings? The specific heat of aluminum is $900 \mathrm{~J} /(\mathrm{kgXK})$.
A) $1900 \mathrm{~J} /(\mathrm{kgXK})$
B) $2600 \mathrm{~J} /(\mathrm{kgXK})$
C) $3300 \mathrm{~J} /(\mathrm{kgXK})$
D) $3800 \mathrm{~J} /(\mathrm{kgXK})$

Answer: B
5) A gas expands from an initial volume of $0.040 \mathrm{~m}^{3}$ and an initial pressure of 210 kPa to a final volume of 0.065 m^{3} while its temperature is kept constant. How much work is done by the system?
A) 3.7 kJ
B) 4.1 kJ
C) 5.6 kJ
D) 7.9 kJ

Answer: B
6) An ideal monatomic gas undergoes a reversible expansion to 1.5 times its original volume. In which of these processes does the gas have the largest loss of internal energy?
A) at constant pressure
B) if the pressure increases in proportion to the volume
C) at constant temperature
D) adiabatically

Answer: D
7) The molar specific heat is the amount of heat required to raise the temperature of what amount of matter by one unit of temperature?
A) one tooth
B) one unit of mass of a material
C) one mole of a substance
D) one molecule of a substance

Answer: C
8) What is the molar specific heat of an ideal monatomic gas, expressed in terms of the gas constant R ?
A) R
B) $3 R / 2$
C) $5 R / 2$
D) $5 R / 3$

Answer: B
9) For an ideal monatomic gas,
A) $C_{\mathrm{p}}=C_{\mathrm{v}}$.
B) $C_{\mathrm{p}}>C_{\mathrm{v}}$.
C) $C_{\mathrm{p}}<C_{\mathrm{v}}$.
D) More information is needed to answer this question.

Answer: B
10) A certain ideal gas has a molar specific heat at constant volume $C_{\mathrm{v}}=7 R / 5$. What is its molar specific heat at constant pressure?
A) $12 R / 5$
B) $7 R / 3$
C) $12 R / 7$
D) $4 R$

Answer: A
11) An ideal monatomic gas undergoes a process that takes it from an initial pressure P_{1} and an initial volume V_{1} to a final pressure P_{2} and a final volume V_{2}, where $V_{2}=V_{1}$ and $P_{2}=2 P_{1}$. The process is carried out in two steps: an isothermal expansion to an intermediate volume V, followed by an adiabatic compression to its final volume. What is the intermediate volume V, in terms of the initial volume V_{1} ?
A) $1.5 V_{1}$
B) $21 V_{1}$
C) $7.3 V_{1}$
D) $2.8 V_{1}$

Answer: D

